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We study exponential operators SA(f, t) satisfying for t E (A, B) with A :> - 00,

p(A) = 0, p'(A) =F O. We normalize these operators by A = 0, p(A) = 0, p'(A) =

1. We show that there is a one-to-one correspondence between these operators
and basic sets of binomial type {Pn(X)}~o with Pix) :> 0 for x> O. This cor
respondence is achieved via inverting a family of bilateral Laplace transforms.

Sif. t) = roo W('\, t, u)/(u) du,

oW '\(u-t)
-=--wat p(t) ,

roo W('\, t, u) du = 1.
.-oo

1. INTRODUCTION

An exponential operator is a postive linear integral operator

SA(f, t) = fOO W(A, t, u) f(u) du,
-oo

(1. 1)

whose kernel W(A, t, u), a function or a generalized function, satisfies the
partial differential equation

oW
7it

A(U - t) W
p(t) , A > 0, (1.2)

and the normalization condition

fOO W(,\, t, u) du = 1.
-oo

(1.3)
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n = 1,2,....

(1.5)

The function p(t) is defined on a subset of (- 00, 00). The domain of t in
(1.1) to (1.3) is any component of{t Ip(t) > 0, P is analytic at t}. The domain
of t will be referred to as (A, B). The exponential operators with p(t) a
quadratic polynomial were studied by May [2]. Ismail and May [1] studied
exponential operators with general p(t). The exponential operators are
approximation operators, that is, SA(f, t) ~ f(t) as ,\ ~ 00, for certain
classes of functions f The following are examples of exponential operators.

(i) The Gauss-Weierstrass operator; p(t) = 1, tE(-OO, 00),

GA(f, t) = (,\j27T)1/2 fXl exp{-'\(u - t)2J2} f(u) duo
-00

(ii) The Szasz operator, p(t) = t, t E (0, (0),

_ -At 00 (,\t)k k
SA(f, t) - e t;o k! f(--x-).

(iii) The Bernstein polynomials, p(t) = t(l - t), t E (0, 1),

Bn(f, t) = kto (~ ) tk(l - t)n-kf( ~),

(iv) The Baskakov operator, p(t) = t(l + t), t E (0, 00),

_ -A 00 ('\h ( t )k (k )
LA(f, t) - (l + t) ,tok! T+T fT'

(v) The operator RA introduced by Ismail an May [1], p(t) =
t(l + t)2, t E (0, (0),

00 A(A + k)k-l ( t)k (-kt) (k)
Rif, t) = exp{-,\tj(l - t)} ,to k! T+T exp T+T fT'

References to the above operators and for other exponential operators can
be found in [1, 2]. Several approximation properties of these operators can
be derived from (1.2) and (1.3). On the other hand it is clear that obtaining
explicit forms for these operators is undoubtedly desirable. Ismail and May
[1] identified the exponential operator (1.1) as the bilateral (two-sided)
Laplace transform

SA(f, t) = L: exp (-,\ ( fJp(o)u dfJ) C('\, u)f(u) du (1.4)

for some c E (A, B). This identification led to more insight into the theory
of exponential operators; see [1]. The normalization (1.3) becomes

f oo ( It fJ - u )
--00 exp -,\ c p(fJ) dfJ C('\, u) du = 1.
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(1.6)

There is at most one generalized function C('\, u) satisfying (1.5). More
precisely, if CI and C2 are generalized functions such that, for some C E (A, B),

L: exp (-,\ f Bp(e)u dB) C&\' u) du

= L: exp (-A ( Bp(B)u dB) C2(A, u) du,

then CI ('\, u) = CiA, u). See Zemanian [6, p. 69].
It is clear that obtaining explicit form for SAC/, t) depends on inverting (1.5)

and that when A > - 00, A will be a singularity or zero ofpet). The present
paper treats the inversion of (1.5) when A > - 00 and A is a simple pole
of Ijp(t). We shall show that in this case the generalized function C(..\, u)
satisfying (1.5) is a sum of delta functions, say

00

C('\, u) = I 1>k(A) 8(k - Au),
k=O

so that

00 00 kf C('\, u)f(u) du = I 1>k(A)f(-x-).
-00 k=O

and the operator SAC/' t) takes the form

ro ( It AB - k ) (k)Si/, t) = to 1>i..\) exp - c p«(J) dO fT'

(1.7)

(1.8)

(1.9)

It will turn out that for some ex =Ie 0, the sequence {k!1>k(A) e-~A};'=o is a basic
set of binomial type; see Definition 2.1 below. These polynomials of binomial
type are well known. The enumeration properties of these polynomials have
been studied lately by G.-c. Rota and others in a series of papers on the
foundations of combinatorial theory; see [3, 4]. Further references can be
bound in [4]. However, the connection between polynomials of binomial
type and exponential operators was not knownl We shall show that there is
one-to-one correspondence between basic sets of binomial type and the
generalized function C(A, u) satisfying (1.5) with pet) having a simple zero
at t = A. To illustrate this correspondence we treat, in Section 4, the case
(A, B) = (0, 00), pet) = t(1 + 4t)I/2 which yields a new aproximation
operator. We also show that the basic set of binomial type {Pn(x)}:7~o

generated by
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gives rise to an exponential operator with p(t) = «1 + 8t)1/2 - 1[4) X

(1 + 8t)1/2, which is also a new exponential operator. Section 2 contains
basic facts needed in the subsequent analysis. Section 3 contains our main
results and exhibits the above mentioned one-to.-one correspdndence. Finally
Section 4 contains some examples.

2. PRELIMINARIES

DEFINITION 2.1 (Sheffer [5]. See also Rota et al. [4]). A sequence of
polynomials {pn<x)}~=o is called a basic set of binomial type if

(i) p,,(x) is of precise degree n,

(ii) p,,(x + y) = L~=o (~) Pk(X) P,,-k( y),

(iii) Po(O»= l,p,,(O) = 0 for n = 1,2,....

LEMMA 2.2. (Sheffer [5]. See also Mullin and Rota [3]). The sequence
ofpolynomials {p,,(x)}~=o is a basic of binomial type if and only if

00 In
L p,,(x) , = exp(xH(t»,
,,~o n.

H(t) is a power series with H(O) = 0, H'(O) =1= O.

(2.1)

LEMMA 2.3. The operator SA(/, t) of (1.4) is independent of c.

Proof. Let us denote C(A, u) of (1.5) and SA(f, t) of (1.4) by C(A, u, c) and
SA(f, I, c), respectively. Then by (1.5) we have

fOO ( ft 8 - u )
-00 exp -A Cl p(8) d8 C(A, u, Cl) du

foo ( ft 8 - u )
= -00 exp -A c. p(8) d8 C(A, u, C2) duo

Since this is equivalent to

fOO ( ft e- u ) ( fCl 8 - u )
-00 exp -A C p(8) d8 exp +A C p(8) d8 C(A, u, cl ) du

foo ( ft () - u ) (fc, () - u )= -00 exp -A C p(8) d() exp A C p(8) d8 C(A, u, c0 du

from (1.6) it follows that

( f Cl e- u ) ( fC' 8 - u )exp A -(e) de C(A, u, cl ) = exp A -(e) de C(A, u, c2)
C p. C P
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or

The substitution of ce.\, u, C2) from (2.2) in (1.4) yields

fOO ( It e- u )
Si/, t, c2) = -00 exp -.\ Cz pee) de

( Icz e- u )
X exp -.\ -(e) de ce.\, u, cl)f(u) du

C1 P

foo ( It e- u )
= -00 exp -.\ C1 pee) de ce.\, u, c1 ) feu) du

= Si/, t, c1).

3. MAIN RESULTS

181

(2.2)

Recall that we are studing only the case when I(P(z) has a simple pole
at z = A. By a linear change of variables in t and u we can take A = 0 and

l(p(z) = liz + h(z)

with h(z) analytic at z = O.

LEMMA 3.1. If ce.\, u) is of the form (1.7) then

00

exp{.\(1)m - 1)(0» = L e-A1ICO )ePk(.\) gk,
k~O

where

g = get) = ~ exp !f h(e) del

and

1)(g) = t - c +reh(e) de.
c

Furthermore 1)'(0) =1= 0 and one can choose c in order to make 1)(0) =1= O.

Proof The substitution of (1.7) into (1.5) implies

I It e de I 00 I It de I
exp .\ c P(B) ="fo ePk(.\) exp Ik c P(B) I;

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)
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hence by (3.1) we get
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exp lA (t - c +f Bh(B) dB)l = ~o epiA) l~ exp f h(B) dB(

Performing the changes of variables from (t, h(t» to (g, 'T)(g» defined by
(3.3) and (3.4) we obtain

00

exp{A'T)(t)} = L: epk(A) gk.
k~O

(3.7)

We now choose c in order to make 'T)(O) =F 0 and dry/dg 1.=0 =F O. Observe
that -'T)(O) = c + f~ Bh(B) dB implies that d'T)(O)/dc = -1 at c = O. Hence
there is an e with 'T)(O) =F 0 for all c E (0, e). Clearly d'T)/dg l.~o =F O. Now (3.2)
follows immediately from (3.7).

COROLLARY 3.2. The sequence of functions {e-~n(O)k!epk(A)}~~l forms
a basic set ofbinomial type.

THEOREM 3.3. If A = 0 and p(z) is of the form (3.1) then C(A, u) of (1.5)
is given by

C(,\, u) = e~n(O) ~o .p'lt) 8(k - AU),

where {.pk(A)}~~o is the basic set ofbinomial type generated by

(3.8)

(3.9)

and the functions gand'T) are defined by (3.3) and (3.4).

Proof The generalized function C(A, u) of (3.8) satisfies (1.5) as can be
seen by direct substitution. The theorem then follows from Lemma 2.3.

THEOREM 3.4. Under the assumptions of Theorem 3.3 we have

Proof Substitute (3.8) in (1.4). Note that the operator (3.10) is indepen
dent of c or 'T)(O).

The operator defined by (3.10) may not be positive. The following is a
characterization of such operators.

THEOREM 3.5. The operator S~(f, t) of (3.10) is positive on continuous
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functions with compact support if and only if if;k(>-") is nonnegative for all k
andfor>-" > o.

Proof For every k, k = 0, 1,... , define the continuous functionfiu) by

fiu) = 0 if u E ( _ 00, k ~ 1 ] u [k ; 1 , (0),
= 1 at x = kjA,

1· . [ k - 1 k ] d [k k + 1 ]= mear m ->-..-'T an T'-'\-·

Clearly SA(fk , t) is a positive multiple of if;k(>-").
We now prove a converse to Theorem 3.4.

THEOREM 3.6. Every basic set of polynomials {if;i,\)}'t:=o of binomial type
generates an integral operator (1.1) whose kernel satisfies (1.2) and (1.3) with
A = 0 and pet) of the form (3.1). The integral operator is given explicitely by

Proof By Lemma 2.2 {fk('\)}'t:~o has the generating function

(3.12)

Assign 7](0) arbitrarily and set

(3.13)

and

(3.14)

Define the generalized function We,\, t, u) by

00 o(k - '\u)
W('\, t, u) = eu exp{-'\(7](0 - 7](0))} t:o fk('\) k! . (3.15)

Clearly

aw = aWdg = dg (,\u _,\ '(0) W = >-..(u - t) dg W.
at ag dt dt g 7J g dt '
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which is (1.2) with
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pet) = g(dt/dg). (3.16)

It remains to show that l/p(t) has a simple pole at t = 0 with residue 1.
First it is clear from (3.14) that t = 0 when g = O. Moreover (3.16) shows
that p(O) = 0 and that

hence

dp(t)/dt It~o = 1.

The analyticity ofpet) is obvious. When W(,\, t, u) is given by (3.15) the corre
sponding integral operator is given by (3.11).

Remark 3.7. The operator (3.11) is independent of the choice of 7](0).
The reason that the value of7](0) determines c and we have seen in Lemma 2.4
that the resulting integral operator is independent of c.

THEOREM 3.8. There is a one-to-one correspondence between basic sets
ofbinomial type {o/k(>")}'t:~o , with o/k(>") ~ 0 for all >.. > 0 and all k, and expo
nential operators corresponding to pet) with p(O) = 0, p'(O) = 1.

Proof Combine Theorems 3.4 to 3.6 and Remark 3.7.

4. EXAMPLES

We illustrate the theory developed in the previous section by constructing
the operators generated by pet) = t(1 + 4t)1/2 and pet) = t(1 - t)1/2. As
we shall see the former pet) generates an exponential while the later pet)
does not, since a member of the corresponding basic set changes sign for
>.. E (0, (0). We also compute the function pet) and the exponential operator
associated with {Pn(>")}:~o

(4.1)

EXAMPLE 1. Consider pet) = t(1 + 4t)1/2, (A, B) = (0, (0). We take
c = 2. Hence h(t) = l/p(t) - I/t = I/t{(1 + 4t)-1/2 - I}. It is easy to see
that

( h(e) de = In l( (1 + 4tt/2 - 1 n.
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The functions get) and 1M) of (3.3) and (3.4) are

t \ (1 + 4t)1/2 - 1 12

get) = 21 1 \ '

and

,M) = t{(1 + 4t)1/2 - 3},

185

respectively. Therefore 1](0) = -1 and (1 + 4t)1/2 = (2 + g)(2 - g). Con
sequently

and the corresponding basic set of polynomials, say {QnCA)}:~o, has the
generating function

f Qn~A) gn = exp{Ag(2 - m,
n~O n.

(4.2)

B(g) = 2(1 - (1 - /)1/2),

and it is plain that Qn(A) :;;:: 0 for A > 0 and for all k. Equation (4.2) can be
written as

showing that {2nQn(-A)}:'=o is the basic Laguerre polynomials, see Rota
et al. [4].

EXAMPLE 2. Take pet) = t(1 - t)1/2. Clearly (A, B) = (0, 1). Let c = t.
Straight forward manipulations show that

get) = t 11 (~1S1_-ti:/2 r, 1](g) = 21/2 - 2(1 - 1)1/2, 1](0) = 21/2 - 2,

1/2 _ 1 - g(3 - 2(21/2»
(1 - t) - 1 + g(3 _ 2(21/2» .

Therefore

_ 4~(3 - 2(2)1/2)
Beg) - 1 + (3 _ 2(2)1/2) g .

Let
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It is easy to see that
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and hence the resulting SA operator is not positive because Q2(>") changes sign.

EXAMPLE 3. Assume that H(g) = g(1 + g) and take 7](0) = 1. From
(3.14) we get t = g(1 + 2g), that is g = {(l + 8t)l/2 - 1}/4. The function
pet) is, by (3.16)

pet) = g(1 + 4g) = te(1 + 8t)l/2 - 1)(1 + 8t)1/2.
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